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Abstract

A two-component system is considered, which is subject to accumu-
lative deterioration. Due to common stress, the components are depen-
dent. Their joint deterioration is modelled with a bivariate non decreasing
Lévy process. The deterioration level of both components is known only
through perfect and periodic inspections. By an inspection, components
with deterioration level beyond a specific threshold are instantaneously
replaced by new ones (corrective or preventive replacements). Otherwise,
they are left as they are. Between inspections, failures remain unrevealed.
This replacement policy is classical in a univariate setting, with deterio-
ration modelled by a Gamma process. In the bivariate case, it leads to
imperfect repairs at the system level, which highly complicates the study.
The replacement policy is assessed through cost functions on both finite
and infinite horizons, which take into account some economical depen-
dence between components. Markov renewal theory is used to study the
behaviour of the system, in a continuous and bivariate setting. Numerical
experiments illustrate the study, considering a specific Lévy process with
univariate Gamma processes as margins. Though technical details are
not provided here for the numerical computations, the paper shows that
there is a technical gap between the traditional one-dimensional studies
and the present two-dimensional one, especially for the computation of
the asymptotic distribution of the underlying Markov chain. Hence there
is a need for further development in the bivariate (or multivariate) setting.
Keywords: Reliability; multivariate Lévy processes; dependent wear indi-
cators; Gamma processes; Markov renewal theory.

1 Introduction

In reliability, stochastic models for deterioration based on actual measurements
of the system deterioration level have been the subject of many studies during
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the last decades. In case of non decreasing deterioration, classical models include
compound Poisson processes and Gamma processes, according to whether the
deterioration is due to isolated shocks or continuous wear accumulation, see
[1], [2] or [3] e.g.. These classical models are both univariate non decreasing
Lévy processes, also called subordinators. We here consider a two-component
system, where the deterioration of each component is measured by a univariate
subordinator. Because of a common stressing environment, the deterioration
levels of the two components are correlated. Hence the need for a bivariate
stochastic model to describe the system evolution.
Up to our knowledge, multivariate non decreasing wear indicators have not

been much studied in the previous literature. Several notable exceptions may
however be found such as [4] and [5], which both use specific constructions lead-
ing to some specific bivariate increasing Lévy processes (though not recognized
as such in the quoted papers). Following [6], we here propose to model the evo-
lution of our two-component system by a general bivariate subordinator (or non
decreasing bivariate Lévy process). This englobes lots of possible dependence
between the two marginal processes. As an example, let us consider two com-
ponents in a common stressing environment, where the stress arrive by shocks
according to a Poisson process. Without considering the common environment,
the deterioration of the two components is measured by two univariate and in-
dependent subordinators (Gamma processes e.g.). Assume that the common
shocks make both components older, with identically and independently dis-
tributed bivariate increments of age at each shock. The bivariate "virtual" age
of the two components submitted to the shocks then appears as a bivariate com-
pound Poisson process. The process describing the two components submitted
to the shocks hence appears as a bivariate Lévy process (composed of the two
initial independent Gamma processes) subordinated by a bivariate compound
Poisson process, and it consequently is a bivariate subordinator.
Both series and parallel structures are envisioned for the two-component sys-

tem. Each component is considered as failed as soon at its deterioration level
has reached a pre-determined failure threshold. In [6], the system was assumed
to be continuously monitored and repairs to be perfect. In the present paper,
the deterioration level of the two components is known only through periodic in-
spections. By an inspection, failed components are instantaneously replaced by
new ones (corrective replacements). In case where one single component is down
by an inspection, this leads to an imperfect repair at the system level. For the
two envisioned structures (series and parallel), the system may remain failed for
a while before an inspection. To lower the system down-time, a condition-based
maintenance policy is considered, where preventive replacements are performed
at inspection times, when the deterioration level of each component is observed
to be beyond a preventive threshold (lower than the corrective threshold). The
preventive maintenance policy is assessed through a cost function, both on a
finite and infinite horizon. This cost function takes into account down-time
unitary costs, inspection costs as well as replacement costs, with economical de-
pendence between replacement costs. (Simultaneous replacements are less costly
than separate replacements). Our model hence takes into account two kinds of
dependence: 1. stochastic dependence between the random deterioration lev-
els of each component (induced by common stress); 2. economical dependence,
which may lead to grouped replacements to lower replacement costs, and conse-
quently implies some kind of functional dependence. This twofold dependence
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highly complicates the study (and especially the stochastic one), as well as the
imperfect repairs.
Similar preventive and corrective threshold-based replacement policies have

already been considered in the literature on a large scale in the univariate set-
ting, see [3] for numerous references in case the system deterioration is modelled
by a Gamma process. Papers are much fewer in the multivariate setting. One
may however quote [7], where the authors envision a two-unit series system
with stochastically independent but economically dependent components, in a
discrete time setting. Though their study is highly simplified by the assumption
of stochastic independence between components, their condition-based inspec-
tion scheme is however more complicated than our periodic one. Also, like lots
of other papers on similar subjects, they only envision long-time runs whereas
we also consider the case of a finite horizon time, additionally.
The article is organized as follows: the model is presented in Section 2, both

for the unmaintained and preventively maintained system. Section 3 is devoted
to theoretical developments, based on Markov renewal theory. Numerical exper-
iments illustrate the study in Section 4, considering a specific Lévy process with
univariate Gamma processes as margins. Concluding remarks end the paper in
Section 5.

2 The model

2.1 The unmaintained system

The deterioration of the two-component system is measured by a bivariate non-

decreasing Lévy process X =
(
X
(1)
t , X

(2)
t

)
t≥0
, also called bivariate subordina-

tor. This means that the process starts from (0, 0) and has homogeneous and
independent increments, see [8] for more details. As in [6], the process X is
assumed to have null drift, so that X is a pure jump process.

For each i = 1, 2, the marginal process
(
X
(i)
t

)
t≥0

stands for the deterioration

of the i-th component and is a univariate subordinator. The i-th component is
considered as failed as soon as its deterioration level is beyond threshold Li and
we set

σ(i) = inf
(
t > 0 : X

(i)
t > Li

)
to be the time-to-failure of the i-th component. In the series case, the system
time-to-failure is

σS = min
(
σ(1), σ(2)

)
.

In the parallel case, it is

σP = max
(
σ(1), σ(2)

)
.

The respective distributions of Xt and X
(i)
t are denoted by µt and µ

(i)
t , their

cumulative distribution functions (c.d.f.) by Ft and F
(i)
t , and their survival

functions by F̄t and F̄
(i)
t . Note that we do not assume µt and µ

(i)
t to admit a

density with respect to Lebesgue measure.
The state of the system is perfectly controlled via periodic inspections at time

0, T, 2T, . . . To avoid the trivial case where the system never fails, we assume
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in all the paper that P
(
X
(1)
T > L1, X

(2)
T > L2

)
= P

(
σ(1) ≤ T, σ(2) ≤ T

)
> 0.

Between inspections, failures remain unrevealed. At time nT , n ≥ 0, only
failed components are replaced (corrective replacements). This means that,
by an inspection, deterioration levels of failed components are reset to zero
whereas they are left unchanged otherwise. Replacements are assumed to be
instantaneous and perfect.

2.2 The preventive maintenance policy

In order to avoid failures and to shorten down periods, preventive maintenance
thresholds Mi are next introduced (with 0 ≤ Mi ≤ Li, i = 1, 2), with a similar
replacement policy as for corrective replacements otherwise. More specifically,
at time nT , n ≥ 0, if the deterioration level of the ith component is between Mi

and Li, a preventive replacement is performed. If its deterioration is beyond Li,
the component is failed and a corrective replacement takes place. Preventive
replacements (PR) are assumed to be instantaneous and perfect, just as for
corrective replacements (CR).
This preventive maintenance (PM) policy is illustrated in Figure 1, where

there are: two simultaneous corrective replacements at time T , one single pre-
ventive replacement at times 2T and 3T , two simultaneous preventive replace-
ments at times 4T and 5T . In this sequence, the maintenance actions at times
2T and 3T are imperfect, at the system level.

Note that though the system state (up or down) depends on its structure
(series or parallel), the replacement policy is the same for both structures.
Taking Mi = Li for i = 1, 2, the unmaintained system appears as a special

case of the preventively maintained system. Taking Mi = 0 for i = 1, 2, the
system is replaced every T time units and the classical periodic replacement
policy with no repair at failure and period T also is a special case of the PM
policy.
To assess the PM policy, cost functions are considered, which takes into ac-

count a down-time unitary cost per unit time (cu), inspection costs (cp) and
replacement costs. The cost of simultaneous replacements of both components
is c1+c2+cr. If only the i-th component is replaced (i = 1, 2), the cost is ci+cr.
This induces an economical dependence between cost replacements. Note that
we do not consider different costs for preventive or corrective replacements. In-
deed, whatever their nature is, all replacements are instantaneously performed
at inspection times and there is no special delay for the corrective ones, nor spe-
cial action either (just replace too degraded components). However, if necessary,
the results might easily be adapted in case of different replacement costs.

3 Theoretical results

3.1 Structure of the underlying stochastic process

Let Y =
(
Y
(1)
t , Y

(2)
t

)
t≥0

be the stochastic process describing the maintained

system. Considering the system state after each inspection, the sequence (YnT )n≥0
is a Markov chain with continuous state space [0,M1]× [0,M2]. Indeed, regard-
less of whether the components are replaced or not at inspection time nT , their
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future evolution after time nT only depends on their state at time nT . This
means that (Yt)t≥0 is a semi-regenerative process, with (YnT )n≥0 as embedded

Markov chain. Both processes
(
Y
(i)
nT

)
, i = 1, 2 have similar properties and also

are semi-regenerative processes, with (Y
(i)
nT )n≥0, i = 1, 2 as embedded Markov

chains and state spaces [0,Mi], i = 1, 2.
We next provide the transition kernels of the different Markov chains, de-

noted by Q(x, dy) and Q(i)(xi, dyi), i = 1, 2. Setting Px (resp. Pxi) to refer to
the conditioning by Y0 = x (resp. Y (i)0 = xi) and dy = (dy1, dy2), we recall that

Q(x, dy) = P (YT ∈ dy|Y0 = x) = Px (YT ∈ dy)

for all x = (x1, x2) ∈ [0,M1]× [0,M2] and

Q(i)(xi, dyi) = P
(
Y
(i)
T ∈ dyi|Y (i)0 = xi

)
= Pxi

(
Y
(i)
T ∈ dyi

)
for all xi ∈ [0,Mi], i = 1, 2.
In case x = (0, 0) or xi = 0, we just write P = P(0,0) or P = P0 in the

following.

Proposition 1 For i = 1, 2, the transition kernel of the Markov chain
(
Y
(i)
nT

)
n∈N

is given by

Q(i)(xi, dyi) = F
(i)

T (Mi − xi)δ0(dyi) + 1[xi,Mi](yi)µ
(i)
T (dyi − xi) (1)

for all xi ∈ [0,Mi], where δ0 (dyi) stands for the Dirac mass at 0.
The transition kernel of the Markov chain (YnT )n∈N is given by

Q(x, dy) =

4∑
i=1

Qi(x, dy)

with

Q1(x, dy) = 1[x1,M1] (y1)1[x2,M2] (y2)× µT (dy1 − x1, dy2 − x2), (2)

Q2(x, dy) = 1[x2,M2] (y2)×
(∫

(M1,+∞[ µT (du1 − x1, dy2 − x2)
)
δ0(dy1), (3)

Q3(x, dy) = 1[x1,M1] (y1)×
(∫

(M2,+∞[ µT (dy1 − x1, du2 − x2)
)
δ0(dy2),

(4)

Q4(x, dy) = FT (M1 − x1,M2 − x2)× δ0(dy1)δ0(dy2) (5)

for all x = (x1, x2) ∈ [0,M1]× [0,M2].

Proof. For i = 1, 2, there are two possible scenarios for the ith component at
time T : either the component is replaced by a new one and its level deterioration
is reset to 0, or it is left as it is. Starting from xi, the first scenario happens
with the probability

Pxi
(
X
(i)
T > Mi

)
= F

(i)

T (Mi − xi).
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As for the second scenario, it means that the level of the ith component at
time T is xi + X

(i)
T , with xi + X

(i)
T ≤ Mi. This provides expression Eq.(1) for

Q(i)(xi, dyi).
As for the whole system, at time T , there are three possibilities: either

no replacement, or one single replacement, or two simultaneous replacements.
According to which component is replaced in case of one single replacement
(component 1 or 2), this leads to four different possible scenarios. As for the
second scenario (replacement of component 1 only), we have:

Ex
[
ϕ (YT )1{

Y
(1)
T =0;Y

(2)
T =X

(2)
T

}] =

∫∫
R2

ϕ (y1, y2)Q2(x, dy)

for all measurable and non negative function ϕ (and all x), with

Ex
[
ϕ (YT )1{

Y
(1)
T =0;Y

(2)
T =X

(2)
T

}]
= Ex

[
ϕ
(

0, X
(2)
T

)
1{

X
(1)
T >M1;X

(2)
T ≤M2

}]
=

∫∫
R2+

ϕ (0, x2 + z2)1{x1+z1>M1;x2+z2≤M2}µT (dz1, dz2)

=

∫∫
R2

ϕ (0, y2)1(M1,+∞[ (u1)1[x2,M2] (y2)µT (du1 − x1, dy2 − x2)

=

∫∫
R2

ϕ (y1, y2)1[x2,M2] (y2)×
(∫

(M1,+∞[
µT (du1 − x1, dy2 − x2)

)
δ0(dy1)

setting (u1, y2) = (x1 + z1, x2 + z2) for the third line, and using ϕ (0, y2) =∫
R ϕ (y1, y2) δ0 (dy1) and Fubini’s theorem for the last line. (Note that the inte-
gration on (M1,+∞[ is made with respect to u1). This provides Eq.(3). Similar
computations provide Eq.(2), Eq.(4) and Eq.(5).

Remark 1 In case Xt admits a probability density function (p.d.f.) ft with
respect to Lebesgue measure, we get:

Q2(x, dy) = 1[x2,M2] (y2)×
(∫ +∞

M1

fT (u1 − x1, y2 − x2)du1
)
δ0(dy1) dy2,

with similar formulas for the other terms.
In case Xt takes range in N2 and M = (M1,M2) ∈ N2, we have:

Q2(x, dy)

=

M2∑
k2=x2

(
+∞∑

k1=M1+1

P
(
X
(1)
T = k1 − x1, X(2)

T = k2 − x2
))

δ0(dy1) δk2 (dy2)

for all x = (x1, x2) ∈ N2 such that 0 ≤ x1 ≤M1 and 0 ≤ x2 ≤M2.
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Remark 2 For the two-component system with dependent components, a nat-
ural question is: what is the influence of the dependence between the two com-
ponents on the performance of the maintained system? More specifically, con-
sider two different systems with identical characteristics, except from the fact
that the two components are more dependent in one system than in the other
(perhaps because of different levels of stress, which induces more or less de-
pendence between components). Then, is it possible to get comparison results
between performance indicators of the two maintained systems, such as relia-

bility or cost e.g.? In mathematical terms, assume that X =
(
X
(1)
t , X

(2)
t

)
t≥0

and X̃ =
(
X̃
(1)
t , X̃

(2)
t

)
t≥0

are two bivariate subordinators with identically dis-

tributed marginal processes
(
X
(i)
t

)
and

(
X̃
(i)
t

)
, i = 1, 2, and such that the

components of X =
(
X
(1)
t , X

(2)
t

)
t≥0

are "less dependent" than the components

of X̃ =
(
X̃
(1)
t , X̃

(2)
t

)
t≥0
. Following [9], this may be specified through assuming

that Xt is smaller than X̃t in the sense of the concordance order, namely that
Ft ≤ F̃t (or F̄t ≤ ˜̄F t, equivalently), where we add ∼ to refer to X̃. To get
comparison results on reliability/cost indicators of the two maintained systems,
a reasonable way might be to get comparison results between processes Y and Ỹ
(with clear notations). However, taking y1 = 0 and 0 < y2 ≤M2, we have:

FYT (0, y2) = P
(
M1 < X

(1)
T ;M2 < X

(2)
T

)
+ P

(
M1 < X

(1)
T ;X

(2)
T ≤ y2

)
= FT (M1,M2) + F

(1)

T (M1)− FT (M1, y2)

and, in general, there is no reason why FYT (0, y2) should be comparable with
FỸt (0, y2). As a consequence, assuming that, without maintenance, the compo-
nents of one system are less dependent than the components of the other one
(with the same characteristics otherwise), the respective levels of the two main-
tained systems are not comparable (at least in a general setting). Hence, we do
not expect the respective reliability/cost indicators of the two maintained sys-
tems to be comparable either. This is confirmed by numerical experiments from
Section 4, where an example is provided, for which the probability of simultane-
ous replacement (which is envolved in cost) is not monotone with respect to the
dependence between components (see Example 3).

3.2 The cost function on a finite horizon time

The total cost on a given time interval depends on the number of replacements
(simultaneous or not), on the down-time duration and on the number of inspec-
tions. The cost is typically computed on some specified time interval of the
form [0, t), and in case t = nT , n ≥ 1, no replacement cost is considered at time
t. (Indeed, we do not want to replace components once the horizon time t is
reached ). Of course, this does not infer on the mean down time, which is the
same on [0, t] or [0, t).
For x = (x1, x2) ∈ [0,M1] × [0,M2] and given that the system starts from

Y0 = x, we set:

• C(x, [0, t)) = mean cumulated cost on [0, t);
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• U(x, [0, t)) = mean cumulated down time on [0, t) (= cumulated unavail-
ability on [0, t));

• R12(x, nT ) = mean number of simultaneous replacement of both compo-
nents at time nT (= probability of simultaneous replacement at time nT
because one single simultaneous replacement may occur at time nT );

• Ri(x, nT ) = mean number of replacement of the i-th component at time
nT (= probability of replacement of the i-th component at time nT ).

With these notations, we get the following expression for the cost function.

Proposition 2 Let x = (x1, x2) ∈ [0,M1] × [0,M2]. Given that the system
starts from Y0 = x, the mean cost on [0, t) is:

C(x, [0, t)) = cuU(x, [0, t)) + (c1 + cr)
∑

n:nT<t

R1(x1, nT ) (6)

+ (c2 + cr)
∑

n:nT<t

R2(x2, nT )− cr
∑

n:nT<t

R12(x, nT ) + cpb
t

T
c,

where b tT c stands for the integer part of
t
T (with b

t
T c ≤

t
T < b tT c+ 1).

Proof. With our notations, the probability that only the first component is
replaced at time nT (given that Y0 = x) is:

R1(x, nT )−R12(x, nT ).

We get:

C(x, [0, t)) = cuU (x, [0, t)) + (c1 + cr)
∑

n:nT<t

[R1(x1, nT )−R12(x, nT )]

+ (c2 + cr)
∑

n:nT<t

[R2(x2, nT )−R12(x, nT )]

+ (c1 + c2 + cr)
∑

n:nT<t

R12(x, nT ) + cpb
t

T
c

which may be synthetized into Eq.(6).
We now have to compute the different quantities involved in C(x, [0, t)),

which is done in the following proposition.

Proposition 3 Let x = (x1, x2) ∈ [0,M1] × [0,M2]. Given that the system
starts from Y0 = x, for the first period, we have:

Ri(x, T ) = F
(i)

T (Mi − xi), for i = 1, 2,

R12(x, T ) = FT (M1 − x1,M2 − x2),

UP (x, [0, t)) =

∫ t

0

Fu(L1 − x1, L2 − x2) du for t ≤ T,

US(x, [0, t)) = t−
∫ t

0

Fu(L1 − x1, L2 − x2) du for t ≤ T,
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where subscripts P and S refer to the parallel and series cases, respectively.
For n ≥ 2, we have the following Markov renewal equations:

Ri(xi, nT ) =

∫
R+
Ri(yi, (n− 1)T )Q(i)(xi, dyi)

for i = 1, 2 and xi ∈ [0,Mi] and

R12(x, nT ) =

∫∫
R2+
R12(y, (n− 1)T )Q(x, dy),

U(x, [T, t)) =

∫∫
R2+
U(y, [0, t− T ))Q(x, dy)

for x = (x1, x2) ∈ [0,M1]× [0,M2] and t > T , where U = US or UP .

Proof. The two first equations are clear, noting that

R12(x, T ) = P
(
x1 +X

(1)
T > M1, x2 +X

(2)
T > M2

)
= FT (M1 − x1,M2 − x2)

(with a similar reasoning for the first one). As for the third and fourth equations,
for t ≤ T , we have for the series case (e.g.):

US(x, [0, t)) = Ex
(∫ t

0

(
1− 1[0,L1]×[0,L2] (Xu)

)
du

)
= t−

∫ t

0

Px
(
X(1)
u ≤ L1, X(2)

u ≤ L2
)
du

= t−
∫ t

0

Fu(L1 − x1, L2 − x2) du.

From the second period, conditioning on the whole history at time T (FT =
σ (Ys, s ≤ T )) and using the Markov property at time T , we get for all n ≥ 2:

R12(x, nT ) = Ex
[
1{

Y
(1)
nT >M1,Y

(2)
nT >M2

}]
= Ex

[
Ex
(
1{

Y
(1)
nT >M1,Y

(2)
nT >M2

}|FT
)]

= Ex
[
Ex
(
1{

Y
(1)
nT >M1,Y

(2)
nT >M2

}|YT
)]

= Ex [R12(YT , (n− 1)T )]

=

∫∫
R2+
R12(y, (n− 1)T )Q(x, dy).

Similar arguments may be used for the other quantities.
Such results allow to recursively compute the different quantities involved in

the cost, using discretized versions of the underlying transition kernels and of
the different quantities.
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3.3 The cost on an infinite horizon time

Setting c(I) to be the random cumulated cost on some time interval I, the point
here is to prove existence and to compute the asymptotic unitary cost per unit
time, which is defined by

C∞ = lim
t→∞

c([0, t))

t
.

As a first step, one can note that each time both components are simul-
taneously replaced, the system is as good as new, and its future evolution is
stochastically identical to that of the initial system and independent of its past.
The stochastic process Y = (Yt)t≥0 hence appears as a regenerative process,
where simultaneous replacements of both components are regeneration times.
The length of a generic cycle is τT , where

τ = inf (n ≥ 1 : YnT = (0, 0)) . (7)

Lemma 4 Under the assumption FT (M1,M2) > 0, the mean length of a generic
cycle is finite: E (τ) < +∞.

Proof. Let
α = P(τ > 1) = 1− FT (M1,M2),

with α ∈ [0, 1) by assumption. For all n ∈ N∗, we have:

P (τ > n+ 1) = P (τ > n; τ > n+ 1)

= E
[
1{τ>n}E

(
1{τ>n+1}|FnT

)]
= E

[
1{τ>n}h (YnT )

]
with

h (x) = E
(
1{τ>n+1}|YnT = x

)
= Px (τ > 1)

= 1− FT (M1 − x1,M2 − x2)
≤ α

due to the Markov property. We hence have

P (τ > n+ 1) ≤ E
[
1{τ>n}α

]
= αP (τ > n)

for all n ≥ 1 and consequently P (τ > n) ≤ αn, all n ≥ 1. This provides:

E (τ) =

∞∑
n=0

P(τ > n) ≤
∞∑
n=0

αn <∞.

As (Yt)t≥0 is a regenerative process with finite mean length cycle E(τT ) =
TE(τ), we derive from classical renewal theory [10] the almost sure existence of
the asymptotic unitary cost C∞ and its following expression:

C∞ =
E(c([0, τT )))

E(τT )
.

The point now is to compute this quantity. With that aim, we follow [11]
and we express it with respect to the stationary distribution of the Markov chain
(YnT )n≥0.
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Proposition 5 Under the assumption FT (M1,M2) > 0, the Markov chain
(YnT )n≥0 admits a unique stationary distribution π (say). Besides:

C∞ =
Eπ [C(·, [0, T ))]

T
(8)

where

Eπ [C(·, [0, T ))] =

∫∫
[0,M1]×[0,M2]

C(x, [0, T ))π(dx) (9)

and where we recall that C(x, [0, T )) stands for the mean cumulated cost on
[0, T ), given that the system starts from x, see Section 3.2.

Proof. This proof follows step by step [11]. We recall the reasoning here, for
sake of completeness.
First, with the help of Lemma 4, we know that the Markov chain almost

surely comes back to state (0, 0) in a finite time. So that (YnT )n≥0 is a Harris
chain. According to [10], there consequently exists a stationary measure ν for
the Markov chain (YnT )n≥0, which is given by

ν(A) = E

(
τ−1∑
n=0

1{YnT∈A}

)
(10)

for any Borel set A of [0,M1] × [0,M2], where ν is unique up to a multiplica-
tive constant. As ν([0,M1] × [0,M2]) = E(τ) is finite, the measure ν can be
normalized into one single stationary distribution, which is provided by

π =
ν

ν([0,M1]× [0,M2])
=

ν

E(τ)
. (11)

Also

E(c ([0, τT ))) = E

(
τ−1∑
i=0

c ([iT, (i+ 1)T ))

)

=

+∞∑
i=0

E
(
c ([iT, (i+ 1)T ))1{τ>i}

)
Now, for all i ∈ N, using that the event {τ > i} belongs to FiT and due to the
Markov property at time iT , we get:

E
(
c ([iT, (i+ 1)T ))1{τ>i}

)
= E

(
E (c ([iT, (i+ 1)T )) |FiT )1{τ>i}

)
= E

(
C (YiT , [0, T ))1{τ>i}

)
.

This provides

E(c(τT )) = E

(
τ−1∑
i=0

C (YiT , [0, T ))

)

=

∫∫
[0,M1]×[0,M2]

C(x, [0, T ))ν(dx)

11



due to Eq.(10), from where we derive Eq.(9), using ν = E(τ) π (see Eq.(11)).
To compute the asymptotic unitary cost provided by Eq.(9), we now have

left to compute the stationary distribution π of the Markov chain (YnT )n∈N.
The results are provided under the assumption that the distribution µT of XT

admits a density with respect to Lebesgue measure. This assumption is only
meant to make the results more readable but is in no case mandatory.

Proposition 6 Assume that the distribution µT admits a density fT with re-
spect to Lebesgue measure and let

g(y1, y2) =

∫ ∞
M1

fT (u1 − y1, y2) du1,

h(y1, y2) =

∫ ∞
M2

fT (y1, u2 − y2) du2,

k(y1, y2) = FT (M1 − y1,M2 − y2),

for all 0 ≤ y1 ≤M1 and all 0 ≤ y2 ≤M2.
The invariant distribution π of the Markov chain (YnT )n≥0 is of the shape

π(dx) =a12(x1, x2) dx1 dx2 + a1(x1) dx1 δ0(dx2)

+ a2(x2) δ0(dx1) dx2 + a4 δ0(dx1) δ0(dx2), (12)

where (a12, a1, a2, a4) is solution of the following set of integral equations:

a12(x1, x2) =

∫ x1

0

∫ x2

0

a12(y1, y2) fT (x1 − y1, x2 − y2) dy1 dy2

+

∫ x2

0

a2(y2) fT (x1, x2 − y2) dy2 +

∫ x1

0

a1(y1)fT (x1 − y1, x2) dy1 + a4 fT (x1, x2),

(13)

a1(x1) =

∫ x1

0

∫ M2

0

a12(y1, y2) h(x1 − y1, y2) dy1 dy2

+

∫ M2

0

a2(y2) h(x1, y2) dy2 +

∫ x1

0

a1(y1) h(x1 − y1, 0) dy1 + a4 h(x1, 0),

(14)

a2(x2) =

∫ M1

0

∫ x2

0

a12(y1, y2) g(y1, x2 − y2) dy1 dy2

+

∫ x2

0

a2(y2) g(0, x2 − y2) dy2 +

∫ M1

0

a1(y1) g(y1, x2) dy1 + a4 g(0, x2),

(15)

and

a4 =

∫ M1

0

∫ M2

0

a12(y1, y2) k(y1, y2) dy1 dy2

+

∫ M2

0

a2(y2) k(0, y2) dy2 +

∫ M1

0

a1(y1) k(y1, 0) dy1 + a4 k(0, 0)

(16)

for all 0 ≤ x1 ≤M1 and all 0 ≤ x2 ≤M2,
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with the additional normalizing constraint:∫ M1

0

∫ M2

0

a12(y1, y2)dy1 dy2+

∫ M1

0

a1(y1)dy1+

∫ M2

0

a2(y2)dy2+a4 = 1. (17)

Proof. Writing π(dx) = (πQ)(dx), where Q is provided in Proposition 1, we
have

π(dx) =

4∑
i=1

∫∫
[0,M1]×[0,M2]

π(dy)Qi(y, dx)

which may be written as:

π(dx) =

(∫ x1

0

∫ x2

0

fT (x1 − y1, x2 − y2)π (dy)

)
dx1 dx2

+

(∫ M1

0

∫ x2

0

g(y1, x2 − y2)π (dy)

)
δ0(dx1) dx2

+

(∫ x1

0

∫ M2

0

h(x1 − y1, y2)π (dy)

)
dx1 δ0(dx2)

+

(∫ M1

0

∫ M2

0

k(y1, y2)π (dy)

)
δ0(dx1) δ0(dx2).

(18)

This proves that the invariant distribution is of the form Eq.(12).
Next, introducing Eq.(12) into Eq.(18) and identifying the terms with re-

spect to dx1 dx2, dx1 δ0(dx2), δ0(dx1) dx2 and δ0(dx1)δ0(dx2), we obtain the
expressions of a12, a1, a2 and a4 provided by Eq.(13)-Eq.(16), respectively.
Eq.(17) simply is

∫M1

0

∫M2

0
π (dy) = 1.

The stationary distribution π (or rather (a12, a1, a2, a4)) now appears as
solution of a set of Volterra integral equations of the second kind. Taking fT
smooth enough as in the next section, a discretized version of π may be computed
using an iterative scheme based on the method of successive approximations
[12, 13], as in [7].

4 Numerical experiments

4.1 Bivariate Gamma process

The same specific model as in [6, 14] is here used for the numerical experiments,
which we call bivariate Gamma process. We recall its construction, for sake of
completeness. We first remind that a univariate Gamma process with parame-
ters (a, b) (where a, b > 0) is a subordinator Z such that for every t ≥ 0, the
random variable Zt is Gamma distributed Γ(at, b) with p.d.f.:

fat,b(x) =
1

Γ(at)
bate−bxxat−11{x>0}.

We only envision the case b = 1 in the following, which is no restriction.
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Starting from three independent univariate Gamma processes
(
Z
(i)
t

)
t≥0

with

parameters (αi, 1) for i = 1, 2, 3 (where α1, α2, α3 > 0), we set

X
(1)
t = Z

(1)
t + Z

(3)
t ,

X
(2)
t = Z

(2)
t + Z

(3)
t .

The process (Xt)t≥0 =
(
X
(1)
t , X

(2)
t

)
t≥0

then is a bivariate subordinator with

Gamma marginal processes and marginal parameters (ai, 1) where ai = αi +α3
for i = 1, 2. Pearson’s correlation coeffi cient between the two random variables
X
(1)
t and X(2)

t is independent of t and given by

ρ =
α3√
a1a2

. (19)

We consequently have α1 = a1 − ρ
√
a1a2, α2 = a2 − ρ

√
a1a2 and α3 = ρ

√
a1a2,

with 0 ≤ ρ ≤ ρmax = min
(√

a1
a2
,
√

a2
a1

)
. Two alternate parameterizations

hence are available for (Xt)t≥0: either (α1, α2, α3) or (a1, a2, ρ). Besides, all the
dependence between the marginal processes is contained in the linear correlation
coeffi cient ρ.

4.2 Validation of the results

We here present a few numerical experiments to validate our theoretical results
and their practical implementation, especially for the invariant distribution π,
which is the most technical to compute.
In all the section, the parameters of the bivariate Gamma process are (a1, a2, ρ) =

(4, 4, 0.6). The preventive maintenance thresholds are M1 = 0.5 and M2 = 0.3
and the inspection period is T = 0.6. (No other parameters needed here).
As a first case, the probabilities of replacement of one or two components

are computed at first and second inspection times, via the results of Proposi-
tion 3 with discretization steps h1 = h2 = 0.01. The results are displayed in
Table 1, as well as those obtained by Monte-Carlo (MC) simulation, with 105

histories and 95% confidence intervals (CI). All results are coherent. Note that,
though both components share a common deterioration parameter (a1 = a2),
their preventive thresholds are different (M1 > M2), which leads to higher re-
placement probabilities for the second component. As expected, the probability
of simultaneous replacements (R12) is lower than the probability of replacing at
least one component (Ri, i = 1, 2).

In Table 2, results are displayed for the asymptotic probabilities of replace-
ment of one or two components by an inspection, namely for Eπ (Ri (·, T )),
i = 1, 2 and Eπ (R12 (·, T )), with

Eπ (R12 (·, T )) =

∫ M1

0

∫ M2

0

R12 (x, T )π (dx)

and similar expressions for the other terms. The distribution π has been nu-
merically computed as explained at the end of Section 3.3 and R12 (x, T ) is
computed via Proposition 3, just as for Table 1. Results are also provided by
MC simulations, with 107 histories. For these MC results, we have used the fact
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that π is the asymptotic distribution of the Markov chain (YnT )n∈N and waited
until the chain is stabilized:

Eπ (R12 (·, T )) = lim
n→+∞

E (R12 (YnT , T )) ' E (R12 (YNT , T ))

for large N . Here again, all results are coherent.
Finally, the convergence of the distribution of (YnT )n≥0 towards π is illus-

trated in Figure 2 through the numerical convergence of the mean rate of simul-
taneous replacements on [0, nT ] per unit time towards the asymptotic rate:

lim
n→+∞

1

nT

n∑
i=1

R12 (0, iT ) =
1

T
Eπ (R12 (·, T )) .

To obtain this figure, all computations have been performed using the theoretical
results of the previous sections (no Monte-Carlo simulation).
Based on the numerical results of this section (and on others not displayed

here), one may think that the practical implementation of our theoretical results
is correct.

4.3 Examples

Parameters for all examples are displayed in Table 3, as well as the system
structure when necessary (for computations of mean down times and costs).

Example 1 Two parts of the invariant distribution π of (YnT )n≥0 are displayed
in Figure 3: functions a1 (x1) and a12 (x), which are the p.d.f.’s of π with re-
spect to dx1 δ0 (dx2) (replacement of component 2 only) and of dx1 dx2 (no
replacement), respectively. With the chosen parameters, we observe that a1(x1)
is increasing with x1 and that a12(x) is concave. Also, we get a4 ' 0.89, so that
the probability of simultaneous replacements of both components is here quite
high for large times.
This example illustrates the variations of the mean rate of simultaneous re-

placements per unit time with respect to the period T , both in the asymptotic
and finite time cases (see Figure 4). For the finite horizon case [0, t0) (with
t0 = 4 fixed), this mean rate of replacements is not continuous with respect to
T (Figure 4a). The discontinuity points are the points T such that there exists
some number n satisfying t0 = nT , because at these points, we do not consider
possible replacements at t0. As for the asymptotic case, the rate of simultaneous
replacements seems continuous with respect to T (Figure 4b).

Figure 5a next shows that, as expected, the unitary cumulated mean down
time on [0, t0), namely U (0, [0, t0)) /t0, is increasing with T . Though we have
not studied it from a theoretical point of view, one might indeed think that
U (0, [0, t0)) (with t0 fixed) increases with T . Figure 5b shows that the asymptotic
unavailability Eπ (U (·, [0, T ])) /T is also increasing with T .
The asymptotic unitary cost is plotted in Figure 6b as a function of T . The

function is convex and admits a single minimum at T∞opt ' 0.52. On the finite
horizon [0, t0), the mean unitary cost as a function of T is not continuous (Fig-
ure 6a) and the minimum is at Topt ' 0.03. The optimal inspection periods
hence are very different for the infinite and finite horizons.
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Example 2 The influence of the preventive maintenance thresholds (M1,M2)
on the cost function is here studied, in the case of a series system. We take
cp = c1 = 0 and consider several cases for (c2, cu, cr). Figures have similar
shapes for the finite and infinite horizons. To save some space, they are only
provided for the infinite case. As we can see, the cost function may be convex
(Figure 7), concave (Figure 8) or more complicated (Figure 9). So, it seems hard
to say anything about the shape of the cost function with respect to the preventive
maintenance thresholds (M1,M2) in a general setting. This may be due to the
fact that the mean number of replacements and the down-time durations may
have reverse concavity with respect to (M1,M2).

Example 3 We finally look at the influence of the dependence between the two
components on the probability of simultaneous replacements of both components.
Let us recall that, for the bivariate Gamma model, this dependence is measured
by Pearson’s correlation ρ, see Eq.(19). The probability of simultaneous re-
placements of both components is plotted with respect to ρ in Figure 10. We
can see that it is not monotone with respect to ρ, which is in concordance with
Remark 2.

5 Conclusion

We here considered a two-component system, with deterioration modelled by
a bivariate subordinator. A condition-based preventive replacement policy has
been proposed, which is rather classical in the univariate setting, with deteriora-
tion modelled by a Gamma process. In the bivariate case, it leads to imperfect
repairs at the system level, which highly complicates the study. As an example,
the four parts of the stationary distribution of the underlying Markov chain
have been characterized as the single solution of a set of four Volterra integral
equations of the second kind, and the numerical computation of the stationary
distribution is much more demanding than in the univariate setting. In the
same way, the variations of the cost functions with respect to each parameter
have been observed to be complicated and sometimes not easily predictable (see
Figures 9 or 10 e.g.). The qualitative results obtained in a univariate setting
cannot hence be easily adapted to the bivariate case and there consequently is
a clear need for further development.
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TABLES & FIGURES

Formula MC simulation MC 95% CI
h1 = 0.01, h2 = 0.01 N = 105

R1(0, T ) 0.9551 0.9555 [0.9542 0.9568]
R1(0, 2T ) 0.9569 0.9572 [0.9562 0.9587]
R2(0, T ) 0.9849 0.9850 [0.9842 0.9857]
R2(0, 2T ) 0.9851 0.9848 [0.9840 0.9856]
R12(0, T ) 0.9456 0.9456 [0.9441 0.9470]
R12(0, 2T ) 0.9465 0.9469 [0.9455 0.9483]

Table 1: Probabilities of replacement at first and second inspection times

Formula MC Simulation MC 95% CI
h1 = 0.01, h2 = 0.01 N = 107

Eπ (R1(., T )) 0.9568 0.9568 [0.9555 0.9569]
Eπ (R2(., T )) 0.9851 0.9851 [0.9850 0.9851]
Eπ (R12(., T )) 0.9467 0.9466 [0.9464 0.9467]

Table 2: Asymptotic probabilities of replacement at inspection times

Structure a1 a2 ρ L1 L2 M1 M2 T c1 c2 cr cp cu t0
Ex .1 - 4 9 0.5 - - 0.6 0.9 0.5 - - - - - -
Ex. 1 Parallel 4 4 0.5 0.7 0.6 0.5 0.5 - 1 1 1 0.01 10 4
Ex. 2 Series 4 9 0.5 1.2 1.4 - - 0.5 0 - - 0 - 4T
Ex. 3 - 4 9 - - - 4 5 1 - - - - - 4T

Table 3: Parameter values used in the examples
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Figure 1: The preventive maintenance policy

Figure 2: Illustration of the convergence of the Markov chain (YnT )n≥1
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Figure 3: Parts of the invariant distribution of (YnT )n≥0, Example 1
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Figure 4: Mean rate of simultaneous replacements as a function of T , Example
1
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(a) Finite time case
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(b) Asymptotic case
Figure 5: Unitary mean down time per unit time as a function of T , Example 1
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(b) Asymptotic case
Figure 6: The cost rates with respect to T , Example 1.

Figure 7: The asymptotic cost rate with respect to (M1,M2), Example 2, c2 = 0,
cr = 1, cu = 2
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Figure 8: The asymptotic cost rate with respect to (M1,M2), Example 2, c2 = 1,
cr = 0, cu = 0.1

Figure 9: The asymptotic cost rate with respect to (M1,M2), Example 2, c2 = 0,
cr = 2, cu = 1
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Figure 10: Probability of simultaneous replacement of both components with
respect to ρ, Example 3
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